
Electromagnetic fields in the Godel universe

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 933

(http://iopscience.iop.org/0305-4470/13/3/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 04:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 933-938. Printed in Great Britain 

Electromagnetic fields in the Godel universe 
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Abstract. Perturbative eiectromagnetic fields are investigated in the Godel universe using 
the Debye potential (two-component Hertz potential) formalism. The Godel space-time 
lends itself to this approach since it is algebraically special (Petrov D). With the usual system 
of coordinates used in the text describing the Godel universe, the three of the basis 
coordinate vectors .3/axo, a / a x '  and a/ax3 which are Killing, the field at infinity in these 
directions remains oscillatory, while for the remaining non-Killing coordinate xz the field 
decays at both extremeties. This result compares dramatically well with the behaviour of 
the null geodesics in the Godel universe. 

1. Introduction 

The computation of perturbative electromagnetic fields in curved space-times is of 
considerable interest in general relativity. Cohen and Kegeles (1974, referred to 
hereafter as I) have given a prescription for decoupling the Maxwell equations in 
algebraically special space-times by utilising the Hertz potential formalism. The 
prescription furnishes a decoupled equation for the Debye potentials (two-component 
Hertz potential). The equation is derived using the Newman-Penrose formalism. The 
actual electromagnetic fields (except the monopole field 1 = 0) may be obtained by some 
simple operations of differentiations of the Debye potentials. Cohen and Kegeles have 
used this approach successfully for the Schwarzschild, Kerr and Robertson-Walker 
space-times. 

In this paper we study the behaviour of electromagnetic fields in the Godel universe. 
The Godel solution lends itself to this type of investigation as it is algebraically 
special-type [2,2]-and devoid of any intrinsic electromagnetic field (it is not a 
solution of the Einstein-Maxwell equations). In 9 2 we write down the null tetrad for 
the Godel metric and then list the spin coefficients for the tetrad. The scheme for this 
computation is given in detail in I. We state the equation for the Debye potentials also 
given there. In § 3 the equation is solved exactly in terms of known functions and the 
results compared with the classical approach involving null geodesics. 

2. The governing equation for the Debye potentials 

The Godel universe is a solution of Einstein's equations (with non-zero cosmological 
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constant) with the source as dust. Its geometry is described by the line element: 

ds2 = -(dxO)* + (dx')'+ ( c i ~ ' ) ~  -1  eZqx2(dx3)* - 2 eqx2 dxo dx3 (2.1) 

where q is a parameter related to the vorticity of the fluid. 
We adopt the Newman-Penrose formalism for our investigations. The notation i s  

identical to that of I. We start by writing down the null tetrad for the above line element 
given in (2.1): 

The tetrad vectors satisfy the following relations: 

All other scalar products vanish. It is seen that k" and n a  are repeated principal null 
directions of the Weyl tensor and hence from the Goldberg-Sachs theorem their 
congruences are geodesic and shear-free. This may also be seen immediately by an 
explicit calculation of the spin coefficients of the null tetrad. Therefore we now proceed 
to evaluate the spin Coefficients and then write down the equation for the Debye 
potentials. 

We use the obvious correspondence between the numerical indexing and the 
contravariant tetrad vectors, 

k", na, in", rii" <+I, 2 ,3 ,4 .  

The intrinsic frame derivatives arid the tangent vectors may be simultaneously given 
in terms of k", n", m a  and rii". 

w1= D = k" alax" 

w3 = 8 = m a alax' 

w2 = A =  n a  dlax" 

w4 = S =  m a  a/ax". 
(2.4) 

The dual 1-forms defined by w i ( w , )  = 8;  may be obtained from the scalar product 
relations (2.3) : 

w =-n,dx" ( 2 . 5 )  
4 

W 2 = - k a  dx" w 3  = ma dx" w = ma dx". 1 

The computation of the spin coefficients is done as in I. Here, we merely state the 
results of such a calculation: 

i i i 
P " - -  2 q. @ = - p  

= --zq 
All other spin coefficients vanish. 
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The intrinsic frame derivatives may be stated in terms of the standard basis vectors 
alax', i = 0, 1, 2 ,3 :  

(2.7) 

The decoupled equation for the complex scalar potential 4, as given in I, is stated in 
terms of the intrinsic frame derivatives and the spin coefficients: 

[ - ( A - y  - ?+/I - p ) D  + ( S - C U  + P - V  - ?)SI4 = O .  (2.8) 

Substitution of the spin coefficients from (2.7) and the intrinsic frame derivatives 
(2.8) furnishes a decoupled equation for $ in the case of the Godel universe: 

- a a2 a 
ax a(x2)' ax 

i J 2 q 7 + - +  q? 

a2 + 2 e-4*2-- az __ 4 e-4*2- axo ax3 
a(x3)2)* = 0. (2.9) 

The tetrad components of the Maxwell field tensor in terms of 4 are the following: 

$0 =fkm = [ ( S  -5 - p  - 77)D + ( D  --E - F - p ) S ] f j  

4' = i ( f k , ,  +fam) =[(A- y - 7 +/I -w)D + ( S - E  + p  ++ + 7)8]fj (2.10) 

4 2  =fafl = [ ( A +  y - 7 +@)S+(&+CY +p"-?)A]f j .  

In the standard basis of the coordinate vectors the tensor F&,, is given by 

FFy = 2(&+ &)n&l+ 2 $ & ~ n , ]  + 2&k[, .~i i , ]  

+ 2+ofi[,nvi + 2&m[,nv1 + ~(41-  &)m[,fi,l. (2.11) 

The solution of equation (2.9) for 4 is sufficient to determine the entire electro- 
magnetic field (except for the monopole field 1 = 0) from the relations (2.10) and (2.11). 
The next section we devote to the solution of the equation and try to extract as much 
information from it as possible. 

3. The solution of the Debye potential equation 

Due to inherent symmetries present in the geometry of the Godel universe, the problem 
of solution is simplified. The Godel universe possesses five Killing vectors of which the 
three obvious ones a/axo, a/ax' and a/ax3 provide us with a simplification of the 
equation. The equation (2.9) may be solved by the separation of variables, assuming 4 
to be of the form 

(3.1) t,b = exp(*ikoxO f iktx * i k3x 3)Z (x2) 
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where ko, k l  and k3 are positive constants and Z(x’) is to be determined from the 
equation obtained by substituting the form of the solution (3.1) into the equation (2.9).  
The equation for Z (x2)  is 

d 2 Z  d Z  
+ q T +  ( - 2 k i  e -2qx2+4kOk3  e-qx2- k i -  k : - h q k l ) Z  = 0. 

d(x2)’ dx (3.2) 

The equation (3.2) appears a little cumbersome in the coordinate x2. A transformation 
to a more convenient variable U = e-qxz gives the equation for Z as 

(3.3) 

where k; = ki /q ,  i = 0 ,  1 and 3. 
This is Kummer’s equation and can be converted to the confluent hypergeometric 

equation. But, before doing so, one can obtain some asymptotic information from 
equation (3.3) itself. For large values of U, i.e. large negative values of x2, the last two 
terms in the parenthesis may be neglected to give 

d2Z/du2 - 26:Z = 0. (3.4)  

The solution of this equation is of the form Z = exp ( k J 5 k ; u ) .  We disregard the 
solution with the positive sign as unphysical, for as U +CO, Z ( u )  grows arbitrarily large, 
and as we are considering perturbative electromagnetic fields, this would be contrary to 
our assumption. One then chooses the solution with the negative sign. The solution 
decays exponentially at large negative values of x2 which correspond to large positive 
values of U. The potential is unrestricted in the other three coordinates, the anomalous 
behaviour occurring only with the variation of the x2  coordinate. In the other direction 
of x2  + CO, information may be sought from equatioz (3.3). Since U + 0, the dominant 
factor in the term multiplying Z ( u )  is - ( F i + E : + J 2 k l ) / u 2  which is negative and also 
causes a decay of the potential function. The solution is oscillatory in behaviour only 
when 

4Eook; Ei+E:+JZF,>o 
-2Fi+-- (3.5) 

U U 2  

and this would occur for intermediate values Gf U in the range of (0 ,  CO) if io were 
sufficiently large. More precisely, if > i: + J 2 i l  the solution would be oscillatory in 
the region defined by 

Eo-[~(G---JJZk1)]1’2<E3~ < & + [ ~ ( k ~ - ~ -  JZE1)]1’2. (3.6) 

This corresponds to the ‘central’ region of the x2 coordinate. A large value of makes 
the region narrower as may be seen from equation (3.6). Hence the field seems to be 
bunched up around the region x2 = 0 and dies out at both extremeties. For the other 
coordinates there is no such decay at infinity, and the solution always remains 
oscillatory. However, if we choose the negative sign for k3 the oscillatory behaviour of 
the solution is absent. 

The equation (3.3) converted to the confluent hypergeometric equation affords 
more accurate information _regarding the field. 

Setting Z ( u )  = u n C 1  e -2k3uf (~ )  with n defined by the relation 

n ( n  + 1) = G + E: + &El (3.7) 
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and defining a new variable v = 2J$k;u, f satisfies the confluent hypergeometric 
equation: 

(3.8) 

The two indepezdent solutions of (3.8) are l F l ( n  + 1 -J%o, 2n +2 ,  v )  and 
v lFl(-n - J2E0, - 2 4  U). We use a linear combination of these solutions which 
satisfies the usual boundary condition that the solution Z(v) decays when x 2 +  i 0 0 .  The 
linear combination which satisfies these conditions is 

U ( n  + 1 - J Z O ,  2n + 2,  U )  

-2n-1 

with n the negative root of the equation (3.7). This may at once be seen from the 
following asymptotic behaviour: 

Z ( V )  = v n + l  e-u'2(v) 

when x 2  + CO or, that is when U + 0, Z ( v )  - U-" 
V +CO,  

when x 2  + -CO or, that is when 

v / 2  &CO Z(v)-e-  v . 
The latter asymptotic form of U may be also used in the event of k; >> 1 when x 2  = 0. For 
in this case also v >> 1 and the above approximation is valid. This would afford 
information about the field in the central region (x2 = 0). The potential function then in 
this case has appreciable values predominantly in the region x 2  > 0. For x2  < 0 the field 
dies out rapidly. For large values of Go or cl, i.e. when the expression ki + c; + J?Ll is 
large, n - - (P i+  i; + J2k;)1'2 and the solution would die out as v A  as U + 0 or x 2  + 00, 

where h = (5i+E:+J$G1)1/2. 
It is interesting to compare the results obtained above with the null geodesics of the 

Godel universe, since the electromagnetic radiation propagates along null geodesics in 
the high-frequency limit. Hence it would seem worthwhile to consider the above 
equations in this limit. The computation of the null geodesics is once again assisted by 
the existence of the three Killing vectors a / a x o ,  a/ax' and a/ax3. If U' is a tangent vector 
to the geodesic then the corresponding covariant components have a constant value 
along a fixed null geodesic. Therefore we set 

U 0  = -Po u l = p l  U 3  = -p3 .  

The contravariant components of the tangent vector may be obtained by the metric 
tensor and substituted into the line element to get an equation for the remaining 
component u2.  

(3.10) 

One notes that for large values of lx2/ the expression on the right-hand side of (3.10) 
is negative, which means that real solutions do not exist in these regions. The null 
geodesics seem confined to a bounded range of the x 2  coordinate. The result compares 

( U  2 2  = -po-p:+4pop3 2 
e-qx2-2 e-2qx2 

P 3 .  
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favourably with the wave solution. A real solution for the null geodesic is only possible 
if the condition 

(3.11) 

is satisfied. There seems to be a striking similarity between the expressions (3.5) and 
(3.11) ifeach k; in (3.5) is replaced byp,, i = 0 , 1  and 3. The difference occurs due to the 
term J2E1 in the expression of (3.5) which is absent in (3.11). This could be attributed 
to the fact that the former approach is the more accurate result and the latter is just its 
geometric optic approximation. Indeed, if io is large, i.e. in the high-frequency limit, 
the results become identical. 

4 p 0 p 3  e-qx2 - - p i  - p :  - 2 e-2qr2p32 > o 

4. Conclusion 

The Debye potential formalism is used to compute the electromagnetic fields in the 
Godel universe. It is seen that the Debye potential equation can be solved by 
separation of variables because of the high symmetry present in the Godel universe. 
The oscillations or decay occur only slang the x 2  coordinate; in the remaining three 
independent directions the solution is always oscillatory. For sufficiently large values of 
Ix21, there is a decay in the field strength so that the field appears to be predominant only 
in the central region of the x2 coordinate. This fact compares favourably with the null 
geodesics which are also confined to almost the identical region of space-time. The 
regions under discussion coincide in the high-frequency limit (CO >> 1). Physically the 
difference in both the results occurs due to the low-frequency electromagnetic waves 
departing from the geodetic path, a phenomenon possibly similar to diffraction. 

The Debye potential method that has been used in this paper can be extended to 
space-times with local rotational symmetry, the Godel universe being a specific 
example of this class. These calculations will be published elsewhere (Dhurandhar 
et a1 1979). 
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